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Abstract

The reaction of lithium aluminum alloy with water at high temperature

is considered in terms of phase equilibria in the system Li-Al-O-H. A

thermodynamic analysis of the system reveals the potential Importance of

lithium hydride as a reaction product. Major needs for experimental phase

equilibria data are outlined, and a determination of the Li2O-Al203 phase

diagram is given top priority.---. --

\. Experimental methods for preparation and handling of atmospherically

sensitive L120/A1 2 03 mixtures are given.kDTA Investigation of the system

Li2O-LiAlO2 has yielded information on equilibrium melting behavior, and

the lower limit of melting In the system appears to be 10550 ± 10 OC, with

the eutectic located near (Li2O)7 5 (A1203 )2 5 (mole %).

Quenching experiments with x-ray crystallographic analysis for the

high lithia portion of the system have been inconclusive, possibly due to

non-quenchable, rapidly reversible solid-state phase transitions. DTA data

suggest appreciable solid solution of alumina in Li20, yet there is no

direct evidence of this from the x-ray powder diffraction patterns. Also

the a/$ transition in Li5AO 4 has been particularly difficult to locate

consistently.

On the high alumina end of the system Li2O-A1203, experiments in

sealed Mo capsules have shown that the eutectic temperature is near

1630 OC, that LiAlO2 melts congruently near 1750 OC, and that LiA15O8 melts

incongruently near 1750 0C. Neutron diffraction analysis of LiA 5O,8 ,

cooled rapidly from 1600 OC, shows a 1:3 ordering of Li:Al in the octahedral

sites, with extra peaks of undetermined origin.
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Hass Speotrometrically determined vapor pressure data are reported for

mixtures of LiAlO2 -LIA150 8 and LiA1508-A1203 . The results are in reasona-

ble agreement with literature values, but Indicate the need for more

tInformation on solid solution limits. Heats of reaotion for the vaporize-

*. tion processes are reported. A preliminary thermodynamic model for

prediction of solid-liquid-vapor equilibria has been developed and tested

by comparison with the experimental data.

Needs for future research In the systems Li20-A1203 and LI-Al-

Li20-A1203 are outlined. The utility of such research in understanding the

combustion of mixtures in the Li-Al-O-H system is emphasized. Two

Appendices describe the modeling of viscosities in multiphase mixtures, and

the results of a omputerized literature search on the system Li-Al-O-H.

. Background and Review of Li-Al-O-H System (L.P Cook)

A. ObJective of Study

Among the stored chemical energy propulsion systems currently under

consideration those using lithium as a reactant, or lithium alloyed with

other light metals such as aluminum, appear to offer the most promise in

terms of energy release per unit mass (1). One such system under develop-

. ment is actually a two stage process (2)s

2LI(1) * H20(g) -> L120(0) H 2(6) 113

H2 (g) 1 1/2 02(g) -> H2 0(g). [2,

2 I. ..
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Both reactions release substantial heat. A variant of this scheme uses a

lithium aluminum alloy as the reactant and, in place of reaction [1], the

reaction is:

LIAl(&) 2H2 0(g) > LiAl02 (c) + 2H2(g). [31

This reaction produces a higher enthalpy yield owing to the high stability

of LiAl02 (c).

During the testing of prototype combustors based on these reactions,

it has become apparent that a detailed knowledge of the chemistry for all

phases is needed for optimum design and operation. Factors which must be

accommodated include heat flow associated with phase separation and the

build up of solid products, and the transport of volatile species between

regions in the combustor. The aim of this project is to provide fun-

damental chemical data pertaining to the oxidation of lithium aluminum

alloy by water.

B. Phases Reported in Li-Al-O-H System

The phase equilibrium chemistry of reaction [3) Is potentially

complex. However, as written the phases in this reaction contain three

components, LiAl, H and 0, and can be plotted on a triangular diagram, as

in figure 1-a. A somewhat more convenient representation is figure 1-b,

which is actually a truncated, distorted version of figure 1-a, with oxygen

plotting at infinity In the compositional plane. The possible production

of other phases is apparent in figure 2 where the reaction plane has been

plotted in the quaternary reciprocal system Li-A1l-HL 2 -A 2 3 -H20. Table 1

3
L . . . . * . ~ * * *
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lists phases reported in this system. Of these phases only the ones having

stability at temperatures near combustor operation (e.g., - 1100 K) have

been plotted in figure 2. The lithium aluminum hydrides, for example,

apparently dissociate at relatively low temperatures.

Figure 2 may be visualized as a triangular prism in which the edges

are binary systems and the sides are ternaries. Phase diagrems have been

published for the Li-LiH portion of the Li-H binary (3) and for the Li-Al,

and Al-A1203 binaries (4,5). The solubility of oxygen In lithium metal has

been determined as a function of temperature (6). A calculated diagram (7)

provides an estimate of phase relations In the Li2O-A1203 binary. Phase

relations at low temperatures have been partially studied for the ternary

system LI 2 0-A1 2 03 -H2 0 (8). This leaves the four ternary sides of the

system In figure 2, as well as the interior quaternary relations, which are

largely unstudied. However, as Table I indicates, thermochemical data are

available for many of the phases in figure 2.

-4.,

C. Thermodynamic Analysis

Thermochemical data from the literature have been used to calculate

the reactions in Table 2, which have in turn been used to derive the

sohematic phase relations shown in figure 3. The phases Li5 A10 4 and

LiA15O8 have not been Included in the calculations due to incomplete data.

The compositional extent of melt phases based on LIH and LIOH Is unknown.

The possibility of ternary melts in the system Li2 0-A1203-H20 may be real

at pressures approaching 100 atm. Given those limitations, the results in

4



figure 3 provide only an estimate of the major features of phase comn-

patibility in the system. Information in figure 3 has been combined with

the single quaternary reaction In Table 2 to produce figure 14.

From figure 14 it can be seen that the reaction plane in figure 1 is

not ternary due to the presence of LiH and Al-rich alloy. Figure 5

indicates the products which would result from reaction of LiAl alloy with

I H20, according to relations in figure 14. Instead of occurring as reac-

tion [3), the actual combustion reaction may occur in two stages:

5LiAl(.) 2H2 0(g) -> 'ILiH(Z) + Ul(l) +LiAlO 2(c) B'al

LiH(L) + Alt) + 2I120(g) -> LiAlO2(c) + 5/2 I(2(g) (J~b)

K Many of the substances Involved would not be at unit activity; In particu-

lar, the molten aluminum would contain some lithium.

In order to make quantitative predictions of the course of reaction In

combustors, experimental data must be taken on the thermal stability and

compositional extent of liquids, and on the distribution of tie lines In

I figures 3 to 5. The compound LiAlO2 is central to reactions (3], Ella) and

[4~b], and so a systematic investigation of the system Ui2O-A1203 has

received top priority. Detailed knowledge of melting relations may, In

conjunction with partitioning data for Li-Al-Li2O-A1203, reveal possibili-

ties for manipulation of combustion reactions to produce molten products,

if desired.

5
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Our experimental approach to the system Li 20-AI 203 utilizes a combi-

nation of methods, We supplement classical quenching methods and powder

x-ray diffraction analysis with DTA and with Knudsen cell effusion mass

spectrometry. The latter method gives data on enthalpy of vaporization

which can be related to the phase equilibrium data via solution models.

Figure 6 indicates the phase diagram regions covered by the various

experimental and theoretical techniques.

II. Sample Preparation and Materials Handling of Li 2O/A1 2 03 mixtures

(L. P. Cook)

Depending upon whether compositions were in the L1 2 0-LiA1O2 or the

LiAlO2-A1203 portion of the system, the sources of lithia were LL202 and

Li2CO3, respectively. The reagent grade carbonate, dried at 160 OC under

vacuum and weighed in a dry box, could be used to prepare all compositions

in the alumina rich end of the system by mixing with 0.3 Um alpha alumina

(Linde A)1 under acetone, drying, and calcining in a covered Pt crucible at

approximately 1000 OC. However, for compositions containing more than

50 mole % L20, decarbonation was incomplete, even under high vacuum.

Attempts to use LiNO3 were also unsuccessful, and so a method for

synthesizing high purity Li20 starting material was sought, as lithia

proved to be unavailable commercially. Oxidation of powdered lithium metal

at 400 OC was attempted, but this was also unsuccessful, apparently due to

1Certain commercial equipment, instruments, or materials are identified in
this paper in order to adequately specify the experimental procedure.
Such identification does not imply recommendation or endorsement by the
National Bureau of Standards, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

S6



a kinetic problem. The procedure outlined in (9) was successfully employed

to produce Li202, which was subsequently decomposed under vacuum at 800 OC.

This yielded a highly pure L120, as Judged from the x-ray powder pattern

and the negligible weight loss under high vacuum up to its melting point,

which agreed well with that reported by (9) as 1438 1 15 OC. Lithia

prepared in this way was weighed out with LiAl0 2 ; mixtures of about 1 g

were homogenized dry using a mortar and pestle in a dry box.

Nearly all manipulations involving these materials were completed In a

dry box under an atmosphere of dry N2 or Ar purged with a recirculating

purifier capable of reducing H20 and 02 to less than 1 ppm. This includes

weighing of mixtures, loading capsules and cells for quench runs and for

DTA or Knudsen effusion experiments, opening sealed quench run capsules,

and preparing x-ray slides. X-ray work was completed in a special cell

which allowed continuous purging by a stream of dry nitrogen.

III. DTA Experiments In the System Li2O-LiAlO2 (L. P. Cook)

A. Experimental Method

A Mettler1 thermoanalyzer was employed for DTA work--this allowed

simultaneous monitoring of weight change to better than 0.01 mg during all

phases of an experiment. The sample arrangement is illustrated in

figure 6. Platinum cells with tight fitting lids were used for unknowns as

well as for the alumina reference material (NBS SRM No. 742). Cells were

cleaned by boiling in HCl solution and then distilled water prior to

insertion of each new composition. Cells were weighed in a dry box on a

7



precision microbalance before and after addition of 70 to 100 mg of

powdered sample, and after fitting of the lid. Loaded cells were then

transferred to the thermoanalyzer in a sealed container, quickly inserted

and pumped to 10-5 torr. Following this process, the system was baokfilled

with gettered argon, and during the DTA experiments argon was flowed

through the system at 5 cc/min. This procedure served to minimize the

presence of water vapor.

B. Results

Results of DTA experiments are given in Table 3. These experiments

were carried out at a heating rate of 10 OC/min, and in most cases samples

were repeatedly cycled through a range of several hundred degrees to

observe the reproducibility of the thermal effects. The approximate

magnitudes of thermal affects are indicated in Table 3 by noting the

amplitude of the differential signal where the events were relatively well

*! defined.

Several choices exist as to the manner In which the temperatures of

DTA effects are defined. Selection of the best method depends to a certain

extent upon the experimental geometry. For the apparatus employed here, it

was found that best results were obtained by defining the temperature of

the event as shown in figure 7, using the heating part of the cycle. Using

this method, calibration runs were within the experimental error of the

accepted values for the melting point of NaCl (800.5 *C). Many of the

temperature values In Table 3 have uncertainties associated with them;

* these are derived from statistical analysis of data gathered during thermal

8



cycling. Additionally, runs were completed on replicate samples of 60/40,

- 65/35, 70/30, 75/25 and 80/20 ool % Li20/A1203 to confirm the reality of

the thermal effects observed.

C. Interpretation

Results of DTA experiments are also plotted in figure 8. The non-

reversible exothermic effects occurring between 450 and 550 OC are thought

to correspond to reaction of Li20 and LiAlO 2 to form Li 5 AO14. The fact

that this is observed for all compositions except 55/45 may Indicate solid

solution of Li20 in LIAlO 2. The irreversible endothermic effect between

775 and 825 °C occurs over a large range of compositions and is probably

related to a polymorphic inversion in L15Al0 4 (10,11). A very weak,

apparently reversible effect occurring near 750 OC and detected for the

80/20, 70/30 and 60/40 compositions, is possibly related to a polymorphic

inversion In LIAM02 (12,13). The endothermic effect at about 1055 OC for

compositions between Li5 AlO 4 and LiAIO2 corresponds to the temperature of

eutectic melting. Although a run was not made at the Li5AlO4 composition,

the 80/20 run suggests incongruent melting (see Fig. 9). In general,

liquidus temperatures have not been observed using DTA in this system.

Therefore the higher temperature peak in figure 9 probably corresponds to

the incongruent melting of Li5A1O4 . However this temperature is not in

perfect agreement with those on the Li20 rich side of L15AlO4 , and further

experimentation seems advisable.

Due to the tendency of Li20-rich melts to extensively wet platinum

cells and flow out around the covers, the high temperature portion of the

run for the 95/05 composition had to be terminated after one cycle, and no

6 k 9 ..............................................
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information on reversibility could be obtained. In this run no indication

of the Incongruent melting of L15 AlO4 was observed. This composition shows

a rather g'adual melting event suggestive of the melting of a solid

* solution in close proximity to 95/05 (see Fig. 10). Existenoe of such a

solid solution could explain why the melting of Li5AlO 4 was not observed.

Further interpretation of these and other DTA results must await aooum-

mulation and interpretation of detailed x-ray powder diffraction data.

IV. Quench Experiments and Crystallographic Studies In the Li20-AI 2 03

System (R. Roth, M4. Zoooh12 and L. Cook)

This system can be naturally divided into two parts, LIAlO2-A1203 and

Li 2 O-LiA102 . The high A1203 portion Is a refractory system with melting

points above 16000C and with few problems related to hydration by atmos-

pheric moisture. On the other hand, the high Li20 portion melts beginning

near 1050 *C, and the sample must be protected from atmospheric moisture

and carbon dioxide at all times.

A. Previous Studies

Hummel et al., (14) reported synthesis studies on the system

LiAlO2-A 203 and noted only the compound LiA150 8 occurring between LiAlO2

and A12 03 . A partial phase diagram for the system LIA1O2 -AI 2 03 was

reported In 1961 by Strickler and Roy (15), In which the melting point of

LIA1O2 was indicated as 1700 OC and that of LIA1508 tentatively as 1950 OC.

-~~~~~~~ -- -----

2"uest Worker, NB$ Reactor Division.

10
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A euteotio between these oompounds was tentatively Indioated at 1670 SC.

More recently the JANAF Tables (16) have adopted the melting point of

Strickler and Roy (15) for LiA1O2 after reviewing melting point determina-

tions up to about the year 1979. The compound LIA102 crystallizes in at

least two forms at one atmosphere, a high temperature tetragonal Y

form (12) stable above about 600 OC, and a hexagonal form which may be

stable at lower temperatures (13). Additionally Chang and Margrave (17)

report a third B form of LIA1O2 at high pressure, with all the aluminium In

tetrahedral coordination. Subsequently, Fischer (18) has reported the

synthesis of 0 LiA1O2 at atmospheric pressure. The compound L1A1508 was

investigated by Collongues (19), LeJus and Collongues (20) and Datta and

Roy (21). The latter authors postulated a first order phase transition at

1295 OC, and there has been some controversy regarding this matter (22,23).

Lejus and Collongues (20) postulate substantial high temperature solid

salution in LiAlsO8 .

On the high lithia side, La Ginestra et al., (24) reported the

existence of both Li5A10 and L13AlO3, although published powder patterns

exist only for the former, which has two polymorphs, both studied by

Stewner and Hoppe (10, 11). Guggi et al., (25) report a melting point of

1320 °C for Li5A10 , Byker, et al.. (7), who carried out a thermodynamic

analysis of the system, and estimated a preliminary phase diagram, conclude

that L13AlO3 may have no thermodynamic stability in the system.

11 "

L



B. The HIgh-Alumina Portion of the System

Only one intermediate phase has been found in the subsystem LIAlO2-

Al203, at the composition L120,5A1203 (LiAs108). It has a spinel-like

x-ray diffraction pattern. Specimens of tour compositions were prepared

with .12O:A1203 ratios of 101, 1:2, 104.78 and 1:5. These specimens were

prepared by mixing L120 with either a-A1203 or Y-A1 203 and firing at about

700 oC in air for 24 hours. All further heat treatments were made by

preparing specimens from these calcines in a dry box and firing in air at

various temperatures. The specimens were then transferred to the dry box

via a dessicator and prepared for x-ray diffraction under flowing N2 .

Results are summarized in Table 4.

Heat treatments above 1600 OC were performed by sealing a small

portion of the specimen in a Mo tube in a He atmosphere. These tubes were

then heated in the high temperature furnace in 95N2:5H2 . This furnace

employs a W resistance heater and a W-Re thermocouple, calibrated by

embedding a small Pt wire in A1203 in a sealed Mo tube. The specimens were

heated at various temperatures near the melting point of Pt (1769 C) and

the thermocouple was found to need no appreciable correction. Although it

was not possible to quench specimens from the tungsten furnace, specimens

could be cooled to less than 1000 OC in several seconds by turning off the

furnace power. Following this the Mo capsules were opened and oharaterli-

ad optically and by x-ray diffraction in a dry atmosphere. The melting

point determinations were made by visual observation of the specimen after

removal from the Mo tube. Results are summarized in Table 5 and figure 11.

The compound LiA102 probably melts congruently at about 1750 *C 1 25 SC.

The compound LLA15 08 also melts at approximately the same temperature but

12
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probably incongruently. Specimens at the 1:2 ratio were observed to melt

at considerably lower temperatures than the single phase specimens and the

eutectic temperature is about 1630 OC ± 20 OC. We have not yet established

whether there is a measurable amount of solid solution in either of these

phases. The elements are low in atomic number and x-ray diffraction does

not allow identification of a small amount of second phase.

C. Neutron Diffraction Study of LiAl5o8

Neutron diffraction provides a method for determination of structure

in compounds comprised of light elements not having appreciable x-ray

scattering power. Analysis of neutron diffraction data can yield detailed

structural information without the necessity for single crystal growth and

x-ray precession analysis. A large batch of LIAl5O8 was prepared for

neutron diffraction analysis in order to test for Li:Al site order in the

spinel structure. The specimen was quickly cooled from about 1600 OC and

should represent the high temperature order/disorder state. The neutron

diffraction pattern, unlike the corresponding x-ray pattern, showed many

peaks which could not be attributed to the phases LiAl5O8 or A1203

(Fig. 12). The "spurious" peaks which can be indexed on the basis of a

primitive unit cell with a - 8.09 A, were eliminated from the pattern and

the structure of LiAl508 was refined by the Rietveld method (See Table 6

and Fig. 13). The results show that the structure is similar to LiFe5O8

and the structural formula can be written as A18(L14AI12)032 involving a

1:3 ordering of the cations in the octahedral sites. Space group is P4332

or P41 32. There is no sign of Li+ in tetrahedral sites.

13



D. The High-Lithia Portion of the System

Initially, the subsystem Li20-LiAlO2 was investigated using Li2CO3 as

a starting material. Specimens were contained in Au foil envelopes and

inserted into 1 cm diam. Vycor glass tubes under Ar. Each tube was then

evacuated and heated in a split, nicrome furnace with a maximum temperature

capability of about 900 OC. After most of the CO2 had evolved at this

temperature with the system under roughing pump vacuum, an ion pump was

used to complete final CO2 evolution until the evacuated chamber reached at

least 10-6 torr. The specimen was then quickly cooled to room temperature

by shutting off the furnace. The specimen, evacuated tube and the valve

maintaining the vacuum in the tube were taken to the Ar atmosphere dry-box.

The specimen was then x-rayed under controlled atmosphere conditions.

Results of the x-ray examination are shown in Table 7. Because of incom-

plete reaction this method was determined to be unsatisfactory for prepara-

tion of starting materials and Li20, prepared as outlined in Section II,

was used for the remainder of the experiments.

Six compositions were prepared in the high Li20 portion of the system

by dry mixing of Li20 and precalcined LiAlO 2. Small portions of these

specimens were sealed in Pt tubes and quenched in air from various tempera-

"" tures between 7000 and 1050 OC. However, the results of these heat

treatments are inconclusive (see Table 8). Compositions containing 95 and

90 percent Li20 show only Li20 and LiAIO2 or melted material. Compositions

between 85 and 55 percent Li20 show inconclusive results for the phase

transition between a and B Li5A10 4 . Apparently this transition cannot be

14



reproducibly quenched from any given temperature although both phases were

never found to exist in the same diffraction pattern. Further work is

needed to characterize this transition.

V. Mass Spectrometric Vapor Pressure Measurements in the System

Li20-A1 2 03 (E. R. Plante)

This section deals with vapor pressure measurements made over several

two-phase regions in the lithium aluminate system. Also, in the course of

this work, a literature search of the previous vapor pressure data related

to the lithia-alumina system was carried out.

A. Literature Survey

Vapor pressure measurements in the lithia-alumina system have been

reported by Hildenbrand et al., (26) and summarized later by Potter

et al., (27). These torsion effusion studies provided total vapor pressure

data over the LiAIO2 -LiAl50 8 system (26). In addition, mass spectrometric

ion current measurements of Li + and 02 + over the same two-phase system

showed that, in this part of the phase diagram, Li and 02 comprised about

98 percent of the vapor composition. These workers also summarized data

obtained over the LiAl 5 -A1 2 03 system. From these data they derived

values for the heats of the vaporization reactions which can also be used

to calculate standard heats of formation of LiAlO2 (c) and LIA150 8 (c) using

auxiliary thermodynamic data.

15
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Popkov and Semenov (28) reported Li(g) pressures obtained by mass

spectrometry. They described the process in terms of the vaporization of

LiA1O 2 to form A1203 even though this does not represent an equilibrium

condition.

Guggi, Neubert and Zmbov (29) made mass effusion measurements over

LiAlO2 which gave Li pressures higher than those of Popkov and

Semenov (28). Because of reduction or reaction of the LiAlO2 with their

metallic effusion cells, and the supposition that Pt absorbed Li(g), they

concluded that the true pressures of Li must lie between those of (26) and

their measured pressures using a Mo cell.

In a second paper, Guggi et al., (25) reported measurements over

three, two-phase (condensed) regions in the lithia-alumina system using

mass spectrometry. These data include Li pressures over the Li5AlO 4-

LiAlO 2 , LiAlO2-LiAl508 and LiAl5O8-A1203 regions. Ikeda et al., published

*. similar measurements to those of Guggi et al., which can be found in a

• "preliminary report (30) and a final paper (31) which includes additional

details of the measurements.

Other auxiliary sources of data are the JANAF (16) thermochemical

tables, which give detailed thermochemical data for LiAlO2 (c) and LiA0 2(L)

as well as auxiliary thermochemical data, and the review paper on the

*. lithia-alumina system by Byker et al., (7).
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B. Mass Spectrometer Method

Vapor pressure measurements were made using the classical Knudsen

effusion method coupled with a modulated beam, quadrupole mass spectrome-

ter. In the classical Knudsen method the pressure is related to the rate

of effusion by the expression,

mj [2iRT 1/2

Pi caAt L [5 j

where, for species i, Pi is the partial pressure, mi the mass loss In time

period At, c the Clausing factor which corrects for flow through a non-

ideal orifice, a the orifice area, R the gas constant and T the temperature

in Kelvin. With a mass spectrometer species detector, the partial pressure

P, is determined from the positive ion current using the expression - -

Pi kIi+T (6]

where k is a mass spectrometer constant dependent on species identity.

These relationships are based on the condition of molecular effusion

which requires that the mean free path be much larger than the orifice

diameter. For practical orifice sizes of about 0.5 mm and typical tempera-

tures and molecular weights, these relations are valid to pressures up to

L k
about 10-4 atm.

Elimination of Pi from equations [5] and [6] gives an expression

relating the mass spectrometer constant to known or measured quantities

which is,

17
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k - [mi(2wR)l/2]/[caAt I(MiT)I/ 2 ]. [7]

In practice, the sum of mass losses for a number of experiments at differ-

ent temperatures and time periods are observed and only the most abundant

isotope having an atomic abundance ratio Ai is routinely monitored. Thus

the mass spectrometer constant becomes,

ki = [Ai-mi(2vR)l/ 2 ]/[caMi1/2 JI+ At.T1 /2]. [8]

This method of determining the mass spectrometer constant has the advantage

that the pressure is independent of assumptions concerning ionization cross

sections and mass discrimination effects. For the vaporization experiments

described here, the vapor contains primarily Li and 02, which simplifies

the use of expression [8].

C. Thermodynamic Treatment

Equilibrium vapor pressure data can be used to obtain thermodynamic

functions using the second or third law methods. The third law method uses

known or estimated entropy data, together with the measured Gibbs energy

changes, to calculate heats of reaction or heats of formation of key

products or reactants. One method of application of the third law treat-

ment is to use tabulated free energy functions (Gibbs functions) to

calculate a heat of reaction at a reference temperature (usually 298.15 K).

This is done using the formula

18



&H-(298.15) T CX(GT-H298 )/T - RInK] [9)
p-r

where -(GT-H 2 98)/T are tabulated Gibbs functions summed over products (p)

less reactants (r) and K Is the equilibrium constant for the reaction under

consideration.

The second law method makes use of the measured Gibbs energy data (in

this case the free energy for a vaporization reaction) to evaluate both the

heat or enthalpy of reaction and the entropy change of the reaction. In

this study we have chosen to evaluate the second law values by use of the

IL expression:

0 o AHo(298) 13:
- (Gr-H298)/T - RInK- + B [10p-r T

In which the known Gibbs functions and measured equilibrium constant on the

left hand side are used to determine, by least squares, AHo(298) and B as

slope and intercept respectively. It can be shown that B equals ASO(298,

3rd law) - ASO(298, 2nd law) and that AHo(298) evaluated as the slope is an

accurately adjusted second law heat.

Whether to select the second or third law heats depends to some extent

on how well the Gibb's functions are known. It is widely recognized that

second law values are very sensitive to temperature or composition errors.

In the case of the lithium aluminates there appear to be other problems

which cause unexplained temperature trends in the data and most studies in

the literature have given more weight to the third law values.
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JANAF (16) lists Gibbs functions for all the gaseous species of

interest as well as Li20(c) and LiAl02(c) and these data are used in this

report. However, Gibbs function data are not available for LiAl508 nor for

Li 5 A1O 4 in the temperature range of interest.

Venero and Westrum (32) have measured the heat content of LiA1508 up

to 540 K. Most of the literature studies have assumed that the Gibb's

function (fef) of LiAl508 can be set equal to the expression,

fef (LiAl508 ) = 0.5 fef (Li2O) + 2.5 fef (A1203 ). [11

but Hildenbrand et al., (26) as well as Potter et al., (27) assumed that

fef (LiAl508 ) . fef (LiAlO2 ) + 2.0 fef (A1203 ). 12)

At 500 K, Venero and Westrum (32) obtain a value of (aT-H298)IT equal

to 42.674 cal/mol K compared to 41.851 for equation [11 and 44.018 for

equation £12). Byker et al., (7) estimated free energy functions for

LiAl508 at higher temperatures. At 1800 K the various estimates are

110.642 from Byker et al., 107.735 from Hildenbrand et al., and

105.750 cal/mol K using summation of Li 2 0 and A12 03 functions. Probably

the most logical choice would be to select the estimates of Hildenbrand

since they fall near the mean of the other estimates. However, for the

present, we have used the linear combination of Li20 and A1203 data for

both the LiAl508 and Li5A104 Gibbs function data.
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D. Vaporization of LiAlO 2 - LiAlsO8

The phase diagram indicates that compositions falling in the

LiAIO2 -LiAl 5O8 two phase area should undergo univariant incongruent

vaporization. The vaporization reaction for this region of the phase

diagram can be written as

5/4 LiAl02 (c) - Li(g) + 1/4 02(g) 1/4 LiA1508 (c). 113-

Preliminary data were obtained using a Pt effusion cell having an

effusion orifice with an effective area of 4.3 x 10-3 om2. The results of

these experiments appeared to indicate that the rate of effusion was under

control of a kinetic rather than thermodynamic process. In retrospect, it

appears likely that much of the preliminary data was affected by the

inclusion of small impurities such as Li 2CO3 or Li20 in the initial sample.

The effect of volatile impurities will increase the apparent weight loss

and increase the magnitude of the mass spectrometer constant thus making

the estimated partial pressures too high. A second experimental sequence,

in which a new mass spectrometer constant was determined, gave LI pressures

close to those expected for this two phase region.

Further measurements were carried out using an Ir crucible having an
effective orifice area of 5.1 x 10-4 0.2. The sample used in these

experiments contained fewer impurities than that used in the preliminary

measurements although the C02  mass spectral ion was observed through the

21
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early stages indicating decomposition of unreacted Li2CO3. These data

showed less tendency to be time dependent than the preliminary measure-

ments.

There was, however, a reproducible tendency for the pressures to be

higher especially at the lower temperatures when temperatures were varied

during an experimental sequence in an upward rather than downward direc-

tion. This behavior is shown in figure 14 for the results from the 9011

and 901D data analyzed in Table 9 and is typical of most of the up versus

down temperature sequences.

It is difficult to account for this type of behavior in terms of a

thermodynamic process. The most plausible explanation is that the order-

disorder transformation of LiA1508 described by Lejus and Collongues (20),

which Is accompanied by a sizable volume change, disturbs the sample in the

Knudsen cell sufficiently to increase the amount of impurities able to

evaporate when the temperature is again cycled upward. It was also noted

that at the beginning of an upward temperature cycle, higher than expected

Li+ ion currents were observed. These signals were also strongly time

dependent. Since at the lower temperatures, the rate of Li loss from the

samples is very small, it would not be consistent for the decay in Li+

signals to be due to composition change. But this observation would be

consistent with the uncovering of previously encased impurities which could

then evaporate.

Figures 15 and 16 show representative Li partial pressure data for in-

creasing (I) and decreasing (D) temperature run chronology, respectively.

A few points below 10-7 atm have been omitted to reduce the scale require-
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ments of the graphs. Overall, the scatter in the data is about

25 percent which is characteristic of a system in which some processes

K :are not under thermodynamic control.

The results of a second and third law analysis of data selected with

respect to time and temperature direction are listed in Table 9 in chrono-

logical order. For reaction [13) it can be shown that for effusive flow,

Li= 1 .86 P0 , giving an equilibrium constant of PLi5141(1.86)I/4.

The heat and entropy changes for reaction [13) at 298 K as well as the

third law heat of reaction, using the sum of Li2O(c) and A1203 (c) Gibbs

functions to estimate the Gibbs function of LiAl508, are tabulated for each

experimental run. It is concluded that the most reliable thermodynamic

values for the heat of reaction from this treatment is that from run 902D

because this experiment gives the most satisfactory agreement between the

2nd and 3rd law heat of reaction. Also, the suspected role of impurities

in the evaporation process would tend to increase the apparent Ll pressure.

It should be noted that in general the 2nd law heat of reaction is s3gtifi-

cantly lower for increasing, as opposed to decreasing, temperature runs.

Over the course of this experimental series the sample underwent a

change in bulk composition from essentially 100 wt. % LiAlO 2 to 64 wt%

LiAlO2 and 36 wt % LiAl 5 O8 . Further measurements on a sample in this two

phase region would be useful to aid in confirming the role of impurity

vaporization.
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E. Li and 02 Pressure Data

As noted previously, it is possible to simultaneously determine both

Li and 02 partial pressures. The value of the mass spectrometer sensitiv-

ity constant for 02 was estimated from that determined by weight loss for

Li using the equation

ko2  kLi (OLi TL ALl )/(o02 02 " A02 ) [14]

where oi is the ionization cross section of species i, Ti the relative

transmission factor, and Ai the species isotopic abundance factor. The

cross section of Li was based on Mann's maximum cross section and corrected

by the ratio of the I+max/I+30 at the 30 eV ionizing energy used, while the

02 cross section was taken to be 1.10 based on literature values. Measure-

ments of the transmission factor were made using a rare gas mixture of

known composition and component ionization cross sections. For the 901D

data the average PLi/PO2 ratio was 1.92 which agrees very well with the

theoretical value of 1.86. The Li and 02 pressures for the 901D data set

In figure 17 indicate a constant ratio with temperature, as expected for a

well behaved thermodynamic system.

F. Vaporization of LiA1508 - A1203

The LiAl508 - A1203 region of the phase diagram is also a two-phase

area which should undergo univariant-incongruent evaporation. The vapori-

zation reaction for this region of the phase diagram can be written as,

LiA1508(c) - Li(g) * 1/4 02(g) + 5/2 A1203(c). (15]
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Vaporization experiments, starting with essentially stoichiometric LIAl5 08,

were carried out in the same fashion as for the LiAlO2 -LiA150 8 study.

The vaporization behavior in this region of the phase diagram is

similar to that in the LiA1O2-LiA1508 region except that there is a greater

tendency for a decreased vaporization rate with time. The Li partial

pressure data are shown in figure 18 for data taken with temperatures

increased from point to point during a series while figure 19 shows data

obtained when temperatures were decreased. The scatter in the data Is

comparable to that for the LiAlO 2-LiAl508 region except that for experi-

ments following the 1 04D series the pressures decreased more rapidly with

time.

The results of a second and third law analysis of the data are listed

in Table 10. As with the LiAlO2-LiA1508 data there is a tendency for pres-

sures to be higher when temperatures are varied in an experimental run In

an upward direction as opposed to varying temperatures in a downward

direction. Figure 20 illustrates this effect for data taken in the 9121,

the 912D, and the 1041 series. Here, for simplicity these data sets are

labelled run I Inc T, run 1 dec T and run 2 Inc T. Note that after the run

1, dec T experiment there has been a recovery in the Li pressure giving

better agreement with the run 1 Inc T data than the run 1 dec T data. It

appears that factors other than the usual time dependent effects are

present.

There is clearly a relationship between these effects for the

LiAlO2-Li5AlO 8 and Li5AlO8-A1203 phases and it may be related to the phase

change in which LiAl508 (ordered spinel) is transformed to LiA 5O8 -
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(disordered structure). It is also possible that there is a solid

solubility range on either or both sides of the LiA1508(c) range and that

the reestablishment of equilibrium is fast in one direction but slow in the

other.

To select the most reliable results for reaction [15) from the

Table 10 data we should note that the decrease in pressure from run to run

can be due to (a) evaporation of traces of impurities initially present in
S

the sample such as LiA102 , or unreacted L12CO3 or L20, as well as (b)

surface depletion effects due to formation of A1203 on the surface of the

sample or (c) a solid solution range of LiA1 508. Lacking definitive

information concerning these possibilities, the most reliable results are

considered to be those near the beginning of the experimental series. Also,

there is reasonably good agreement between 2nd and 3rd law heats of

reaction only for data taken during runs where the temperature was de-

creased between experimental points. From this argument we believe that

the results from experiment 104D are the most reliable for the heat

reaction determination.

G. Discussion

The AiO values for the vaporization reactions listed in Table 11 may

be used, together with auxiliary data (Table 12), to derive standard heats

of formation from the elements for each of the high temperature compounds

found In the lithla-alumlna system, as shown In Table 13.

Potter et al., (27) used different free energy functions from those

used here and their results were adjusted to account for this difference.

Also, Ikeda et al., (31) used an unusual method of expressing the vaporiza-
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tion reactions and their data were reevaluated using the Li pressures only.

As mentioned previously, free energy function data for LisA04(c) and

LiA1508(c) are not available in the temperature range of the experiments

and a linear combination of Li20(c) and A1203(c) data was used to estimate

these quantities.

It should be noted that AHf LiA1508 can be obtained directly from -

0

reaction [C]. This quantity can then be used to calculate f LiA102

using the AH for reaction [B]. However, the calorimetric value of AHf

LiAlO2 is thought to be quite reliable and can be used with reaction [B)

to yield a second value of AH; LiA1508. For these calculations we have

used the reference data shown in Table 12 from JANAF (16). Table 13

gives results for AHf LiA1508 using reactions [B] and [C] and also the
0 0

calorimetric value of AHf LiAl02 . It may be noted that the values of AfIf

LiAl508 agree better when calculated from reaction [C] than from those

using the calorimetric value of AHf LiA102 and reaction [B). This is due

to the addition of deviations for the combined reaction, and the direct ob-

servations using reaction [C) are considered more reliable. Values for If.

L15AIO4 have similarly been derived from the results of Guggi et al., (25)

and Ikeda et al., (31) using reaction [A] and the calorimetric value of

AHf LiAlO 2 , as shown in Table 13. At the present time it seems likely that

these values cannot be correct because the Li pressures reported by

Ikeda et al., (31) and those back calculated from the work of

Guggi et al., (25) appear to exceed the vapor pressure of Li over pure

Li 2O (c).
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To summarize, the vapor pressure data from the present work agree

reasonably well with the literature but the behavior of the samples across

the composition ranges is more complex than generally assumed. Analysis of

the thermodynamic data obtained from the vapor pressure measurements is

hampered by the lack of thermodynamic functions for the LiAl508 and Li5AlOM

compounds. The extent of solid solubility of LiA1508 appears to be

uncertain and may be difficult to determine by many experimental methods

because of the order-disorder transition near 1300 OC. Measurement of the

Li pressure across a more extensive region of the LiA102 - LiA1508 and

LIA1508 - A1203 region Is desirable. It seems possible that some of the

results observed In the current study are due to impurity effects. We note

that a lower pressure than that selected from the data in this study would

bring the heats of formation of LiAl508 obtained using equations (13) and

[15) closer together. However, a more definitive thermodynamic analysis of

the vapor pressure data requires quantification of the following likely

effects: (a) evaporation of impurities, (b) solid solution in either

LiAl5 08 LiAliAl02 and (c) surface depletion. Data in the high lithia

region, especially the Li5 A1O4 compound appears unsatisfactory and measure-

ments of at least the solid state should be made on this material using

microbalance and/or mass spectrometric techniques.
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VI. Solution and Phase Equilibria Models for the Li20-A20 3 System

(J. W. Hastie and W. S. Horton 3)

Given the experimental complexity of the phase equilibrium behavior in

the Li20-A1203 system, it is desirable to develop a theoretical framework

to guide and enhance the experimental program. In a previous attempt to

empirically model the phase diagram for Li20-A1203 , Byker et al., (7) used

the Redlich Kister equations to provide an empirical fit to partially

complete phase diagram and related thermodynamic data. The validity of

these equations to ceramic systems has never been established and the

resulting phase equilibria data are often highly questionable and can

seriously disagree with experimental evidence, as discussed by us in detail

elsewhere (33).

In previous work on various Na2O, K20, S102 , A1203 mixtures we have

shown that a chemically based Ideal Mixing of Complex Components (IMCC)

model can correctly predict the solution activity and vaporization proper-

ties and, to a lesser accuracy, the liquidus and solidus phase equilibria

(34). From this earlier experience we believe that the IMCC approach,

should also be applicable to the Li2O-A1203 system.

A. Basis of the Model

The rationale and theoretical basis for the mixing model used in this

study has been presented elsewhere (33). To summarize, the key features of

the model are as follows. We attribute large negative deviations from
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ideal thermodynamic activity behavior to the formation of stable complex

liquid (and solid) components such as LiAlO 2, LiA150 8 and L15Al04. The

terminology of components and complex components refers to the usual

reference state oxides, e.g., Li20 or A12 03 and to their compounds (liquid

or solid), e.g., LiAlO2 (i.e., Li20.A1203), respectively. The component

and complex component oxides formed are assumed to mix ideally, in accor-

dance with Raoult's law. Hence thermodynamic activities and mole fractions

are equivalent quantities with this model. It should be noted that

alternate definitions of ideality, such as the Temkin model, require

structural assumptions that are not necessary in the present treatment. The

component liquids considered here are distinctly different from the

hypothetical associated species used in other modeling approaches. For the

most part, the component liquids are established neutral, stable, thermody-

namic compounds, appearing in phase diagrams in equilibrium with con-

gruently melting solids, and also in reference tables of thermodynamic

functions. The free energies of formation (AGf) are either known or can be

estimated for these complex component liquids (and solids). By minimizing

the total system free energy one can calculate the equilibrium composition

with respect to these components. Thus, for instance, the mole fraction of

Li20 present (X*L12O) in equilibrium with LiAlO 2 , and other complex liquids

(and solids) containing Li20, is known. As we have shown previously for

similar oxide systems, the component activities can, to a good approxima-

tion, be equated to these mole fraction quantities. Thus physical interac-

tions among the complex components are considered negligible compared with

the strong chemical interactions leading to their formation.

30

. . % * ~ . * -- . .--



From the assumption of Ideal Mixing of Complex Components (I4CC), it -

also follows that lithium partial pressures can be obtained from their

thermodynamic relationship to activities. Thus, for example, in the binary

Li 2 0-A1 2 03 system,

PLi (2• X *L12O-Kp)o.
4  [16]

where K is the stoichiometric dissociation constant for reaction of purep

Li20 (liquid or solid) to yield Li and 02.

In the following discussion we test the model, and its accompanying

thermodynamic data base, by comparing predicted PLi data with experimental

values. Thermodynamic activities and phase compositions are also calcu-

lated using this model. The model is constrained to obey the Olbbs-Duhlem

activity and Gibbs phase rule relationships.

B. Thermodynamic Data Base

In practice, application of the IMCC model requires a thermodynamic

data base for the component and complex solids and liquids. The SOLGASMIX -'

computer program (33) used for calculation of the equilibrium composition,

and hence activities, utilizes a data base of the type given in Table 14.

The coefficients to the AGf equation were obtained mainly by fitting

AGf vs T data available in JANAF (16). In a few instances, the literature

thermodynamic data have been re-evaluated within the experimental error

limits which typically are 1 to 3 kcal/mol; e.g., see the earlier work of

L Hastie et al., (34). For cases where no literature data were available for

the liquids, we estimated the thermodynamic functions in the manner
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described earlier (34). Usually, data available for the corresponding

solid phase were converted to liquid functions by estimating the melting

enthalpy or entropy.

Application of the IHCC theory to predictions of phase equilibria

requires a thermochemical data base for all possible solid, liquid, and

vapor components and phases. We have converted all pertinent available

literature thermodynamic data for the Li-Al-O system to the form used in

the SOLGASNIX computer program for free energy minimization, as shown In

Table 14. The Gibbs energies of formation (AGf) corresponding to the

coefficients of Table 14 are given in Table 15. The thermodynamic data

base as represented In Table 14 should be considered an Interim set. We

expect to refine these thermodynamic functions in future work to resolve

differences between JANAF and the results of more recent workers, including

the present work.

C. Results

With the current interim data base of Table 14, we have calculated the

likely phase equilibria behavior of the Li20-A1203 mixtures. Representa-

tive data are shown in Table 16 and figures 22 and 23. Of particular note

In figure 23 is the region between about 1900 and 1920 K where solid LIA1O2

and liquid coexist. Table 17 summarizes the principal reactions for this

phase-transition region. The thermodynamic activity of liquid Li 2 O

increases markedly with increasing temperature over this transition
*1"

interval, leading to a rapid rise in LI partial pressure (PL), as shown In

figure 23. We believe that the reason for this unusual behavior will be

clarified when additional components are included in the theoretical
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data-base, and when the thermodynamic functions derived from various

sources are refined to provide a single self-consistent set of data-base

thermodynamic functions. The comparison between the experimental Li partial

pressure curve and the predicted result is considered satisfactory and is

within the combined errors of the data-base thermodynamic functions and the

experimental work.

Preliminary model results for other compositions are given in

figure 22, in comparison with the interim phase boundaries based on the ex-

perimental results. Note that the model generally predicts the correct

phase behavior.

In future studies we will use this chemical approach to optimize the

thermodynamic model data base by application of existing computer meth-

ods (35, 36) which couple experimental phase diagram data with solution

activities and compound thermodynamic functions.

VII. Needs for Future Research in the LI-Al-O-H System

In this report we have presented data on the phase equilibria and

vapor pressures in the system Li20-A1203, with ancillary modeling. From

this work a number of problem areas needing further study have been defined

including: solid solution of Al203 in Li20; the a/$ transition in Li5AlO 4 ;
Lt

solid solution vs. order/disorder in LiAl 5 O8 ; and mass spectrometry of the

composition Li5 AlO 4 . These problems will be addressed by us in future

work. A thermochemically optimized diagram for the system Li20-A1203 will

be produced. This diagram will be combined with the known phase diagram

for Li-Al to yield, with minimal experimental work, a diagram for the
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system Li-Al-i 2O0AI2 3. This system will depict equilibria between metal

alloy reactants and oxide products in the stored chemical energy conversion

scheme. Additionally, we plan to determine the extent to which molten LiH

dissolves LiAl, Li2 0, LiAlO 2 and LiOH. Similarly important are solu-

bilities and activities of LiA02, Li20, and LiH in LiOH melts. The basic

data thus derived will allow a second generation of predictions and

calculations for the LI-Al-H-Li20-A1203-H20 subsystem of the quaternary -

system Li-Al-O-H .
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IX. Appendix 1. Modeling of Viscosities in Multiphase Mixtures (L. Grabner)

Empirical relations have been applied in the past to model a variety

of multiphase systems (37). A literature survey failed to reveal any data

on viscosities of lithia-alumina melts; however the viscosities of molten

Li and Al are well known (38).

In situations where two liquids mix ideally, then the relation

proposed many years ago by Kendall and Monroe (39) applies well:

1/3 X 1/3 /3 [17I " Xl11 + X2112  [

where X1 and X2 are the mole fractions of the two components in the mixure

and P1 and i2 are their viscosities. This assumes the absence of strong

interactions between components. Viscosity data for pure Li and Al have

been plotted in figure 23. At 1200 K, viscosities calculated for Al/Li

mixtures using equation [17] are shown in figure 24.

For multiphase systems, most efforts to correlate suspension viscosity

have resulted in relatively simple equations giving ps, the viscosity of

the liquid-solid mixture, in terms of the viscosity of the suspending

liquid, PL' and the volume fraction of the solid particles, *s. The

relations proposed are many. They are listed in (37). Of these, the

relation proposed by Steinour (40):
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3 10 .82# (18

is favored for values of *~< 0.14. A graph of equation [18) is given in

figure 25.
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X. Appendix 2. Literature Search on the System LI-Al-O-H (L. Cook)

A comprehensive computerized literature search was designed with the

aid of NBS library staff. Various combinations of the elemental and oxide

components of the system Li-Al-O-H were used as descriptors, such as Li-O,

Li-Al-O, Li20-A1 2 03 , Li20-H2 0, Li-Al-H and Li-Al-H-O. Additionally,

certain compound names were used in the search, such as lithium aluminate

and lithium alumium hydride. No restrictions (other than to avoid duplica-

tion) were made on these searches, so that all references, as for example

with keywords lithium aluminate and water, would be retrieved regardless of

other keywords present.

The data bases searched included Metadex (1966-1983), Chemical

Abstracts (1967-1983), DOE Energy (1974-1983) and Compendex (1970-1983).

The search generated approximately 2000 references. This large number -]

stems partly from technological interest in the system LI-Al-O-H for

applications such as nuclear fusion, advanced batteries, hydrogen storage

and metal organic synthesis. The majority of these references were neither

of direct nor indirect application to the problem of reaction in the system

Li-Al-O-H, and were eliminated, leaving the remainder, which have been

loosely grouped below according to chemistry. No attempt has been made to

annotate this bibliography, but titles are included for the aid of the

Interested reader.
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Table 1. Phases in the System Li-Al-H-Li 2O-A1 20 3 -H2 0

(a) Solids with Published x-ray Powder Diffraction Dataa

Phase Thermochemical Data as f(T)b Commentse

Li X melts 453.7 K

Al X melts 933.5 K

Li 3 Al2  melts incongruently 793 K (4)

LiAl X melts 973 K (4)

LigAl2  melts incongruently 608 K (4)

LiH X melts 961.8 K

LiAl 4 H13

LiAlH 4  X decomposes 410 K

Li3 AlH6

* AlH
- 3
Li20 X melts 1711 K (9)

A1203  X melts 2327 K

aLi5 AlO 4

BLi5AIO4

* czLiAlO2

OLiAlO2

YLiAIO2  X melts 1973 K

* LiAl5Oi 1508 .--

LiOH X melts 744.3 K

"iOHH 20

AI(OH)3
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Table 1. Phases in the System Li-Al-H-Li20-AI203-H20 (continued)

(b) Selected Gases and Liquids

Phase Thermochemical Data as f(T)b

Li(2,) x..

Al(t) X

H2 (g) X

LiH(I) X

Li20(1) X

A1203 () X

LiAlO2 (t) X

H20(g) X

LiOH(t) X

Source of x-ray data is Powder Diffraction File, 1983: JCPDS--Inter-
national Center for Diffraction Data, Swarthmore, PA'.

bsource of thermochemical data is JANAF Thermochemical Tables: Nat.
Stand. Ref. Data Ser., Nat. Bur. Stand., 37 (June 1971; updates from
Dow Chemical Company).

0Unless otherwise noted, data on melting or decomposition came from foot-

note 'b' above.
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Table 2. Calculated Reactions at 1100K in the System Li2-123H0

Conditions

Subsystem (atm) Reaction -AGR(Kcal)

Li-Al-H 1 1/2-H 2( ) + L ~~ ) * L H t + l L -0.038

Li-Al-H 10 1/2-H2(g) + LiAIM * LH(L + AIM9. -2.555

Li-Al-H 100 1/2-H2(g) + LiAlC) LiHMt + Al(I -5.071

*Li 2O-A1203-H20 1 2LiOHMt + A1203(c) *2LiAlO 2(c) + H20(g) -27.101

* L 2O-A1203-H20 10 2LiOH(J + A1203(c) M LA1O2(c) + H20(g) -22.071

Li2O-A1203-H20 100 2LiOH(L) + A1203(c) *2LiAlO 2(c) + H20(g) -17.070

Li-Al-Li2O-A1203  14it)+A1 203(c) +3LiAlO 2(c) + LiAl(L -49.157

Li-Al-Li2O-AI203  1 2Li20(c) + 4A1I) + LiAlO2(c) + 3LiAlM, -15.687

Li-AlLi2O-Al203  1 2L 20(c) + LiAlCI) +~ 4LI(R.) + LiAlO2(c) -9.627

Li-Al--Li2O-Al203  1 3LiAlMt + 2A1203(c) 3LiAlO2(c) 4A1l) -143.097

Li-HLi2O-H20 1 2Li(.. + H20(g) *LiOH(L)+LiH(t) -314.1439

* Li-H-Li O-H0 10 2LiMt + H20(g) * LOH(L + LiHMt -39.1469

Li-H-Li2O-H20 100 2Li(L + H20(g) * LOHMt + LiH(L -44.470

Li-H-Li2O-H20 1 L12O(c) + H2(g) LiOH(L + LiH(9 +29.042 -

L -iH-L2O-H2 0 10 L12O(c) + H2(g) LiOHCL + LiH(9. +314.075

Li-H-Li2O-H20 100 L12O(c) + H2(g) U~LOHMi + LiHMt +39-108

Li-H-Li O-H2  1 L12O(c) + LiHMt Li(RM +.LiOH(t) +32.1148

Li-H-Li2O-H20 10 LiH(k) + H20(g) *LiOH(I) + 112(g) -31.33

H-Al-H20-A1203  1 3H2(g) + Al203Cc) -~3H 20(g) + 2A1(i +183.335

Li-Al-H-Li2O-A1203  1 LiAlO2(c) + 4LHMt -t2L 20(c) + LiA(.) +15.839
WE-H 20 + 2H2(g)

*Li-Al-H-LI 2O-A1203  10 LiAlO2(c) + 4LH(I) -'2L 20(c) + LiAlIM +25-905
-H20 + 2H2(g)

Li-Al-H-Li 2O-A1 2 03  100 LiAlO2(c) + 4iH(.. 2(c) +LiAlML +35.971
- 2 0  + 2H2(g)

**Calculated using data in JANAF tables; data for LiAl(i) estimated using ideal
*solution approximation; hydrogen assumed to behave ideally.
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Table 3. DTA effects observed in the Subsystem Li2O-LiAO 2

Composition (mol%) Temp. (oC) Typea Magnitudeb Comments

(L120)100 1446 + 3 N 81

(Li2O)9 5(A1203)5  480 X(H) 4

(L120)9 5(A1203)5  540 X(H) 6

(Li2O)9 5(A1203)5  790 N(H) 15

(L1i2 0)9 5(A1203) 5  1210 N --- Onset of event

(Li2O)9 5(A1203 )5  1365 N 15 Estimated termination

(L12O)90 (A1203 )1 0  465 X(H) 4

(L120)q0(Al203) 527 X(H) 8

(L1i2 0)9 0(A1203)1 0  778 N(H) 18

(L120)q0(Al203)1O 1110 N 33

(Li2 0)90 (A1203)10  1300 N 5

(L12O)8 5 (A1203 )1 5  455 X(H) 12

(Li2O)8 5 (A1203 )15  500 X(H) 8

(L12O)8 5 (A1203 )15  775 N(H) 24

(L12O)85(A1203 )15  1126 ± 10 N 160

(L12O)8 0(A1203 )2 0  482 X(H) 8

(Li2O)80 (Al203 )2 0  525 X(H) 6

(L12O)80 (A1203 )2 0  815 N(H) 31

(Li2O)80 (A1203 )20  947 ± 1 N 2

(Li2O)80 (Al203 )20  1057 ± 3 N 90 Two peaks overlap
partially

(L12O)8 0(A1203 )2 0  1095 ± 10 N 20

(Li2O)75 (A1203 )2 5  478 X(H) 16

(L12O)7 5(A
1
203)2 5  520 X(H) 8
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Table 3. DTA effects observed in the Subsystem L12 0-LiA1O2 (continued)

Composition (mol%) Temp. (oC) Type Magnitude Comments

(Li 2 0)7 5 (Al 2 03 )2 5  810 N(H) 19

(Li2O)7 5(AI203 )25  1026 ± 6 N 224

(Li2O)70(Al203 )30  470 X(H) 12

(Li2O)70(Al2O3 )30  521 X(H) 3

(Li2O)70(Al2O3 )30  805 N(H) 22

(Li20)70(AI203)30  950 N(H) 1

(Li2O)70(Al2O3 )30  1050 ± 2 N 85

(Li2O)65(Al2o3 )35  480 X(H) 3

(L120)65(AI203)35 -525 X(H) 4

(L120)65(Al203)35 815 N(H) 7

(Li2O)65(Al2O3 )35  1053 N 49
(Li2 0)60(A 203)40  480 X(H) 3

(Li2O)60(Al2O3 )40  520 X(H) 2

(Li2O)60(Al20 3 )40  816 N(H) 8

(Li20)60(Al203)40 956 ± 10 N 1

(Li2O)60(Al203 )40  1056 ± 4 N 48

(Li2O)55 (AI203 )45  1054 ± 5 N 19

* aN - endothermic

X = exothermic
(H) = initial heating cycle only

bApproximate amplitude of thermal excursion, in mV
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Table 14. Sequential Heat Treatments of High Alumina Compositionsa

* Composition
*(mole ratio) Heat
* LiCOA10 Treatment (0C) Duration (hr) X-ray analysis

50:50 500 40 LicO + A1203 + LiAlO2
50:50 700 16 cr-LiAlO2 + Y-LiAlO2 + A1203

(+tr.Li 2 C03 )
50:50 700 2~4 a-LiAIO2 + Y-LiAlO2

50:50 800 3 Y-LiAlO2

50:50 850 5 Y-LiAlO2

50:50 1000 60 Y-LiAlO2

50:50 11400 14 Y-LiA1O2

50:50 1500 0.5 Y-LiAlO 2

50:50 1600 1 Y-LiALO2 (no melting)

50:50 575 768 a-LiAlO2 (+tr.A1203 +
tr.Li2COP) _

*33:67 700 20 (not x-rayed)

33:67 1000 72 Y-LiAlO2 + LiAl5O8
*33:67 1000 1 Y-LiAlO2 + LiAl5O8

(no melting)

(17.3): (82.7) 700 214 U~A1508
(17.3):(82.7) 1000 168 LiAl5O8
(17.3):(82-7) 11400 16 LiAl5O8 + unidentified peak

*(17.3):(82.7) 1600 1 LiAl5O + unidentified peak

(17.3):(82-7) 1600 12

(sealed capsule) LiAl508 (unidentif'ied peaks

(17.3):(82.7) 1600 12 j
(unsealed capsule _ - -- - -

(16.7):(83-3) 700 214 LiAl5O8 (no unidentified peaks)

Pj(16. 7):(83.3) 1006 168 LiAl5O8 (no unidentified peaks)4(16-7):(83-3) 11400 16 LiAl508 (no unidentified peaks)

(67:83)1600 1 LIA1508 (no unidentifie peaks
65 and no melting)65



Table 14 (continued)

alunless otherwise noted, these experiments were performed in a rapid-fire

muffle furnace using a large ample (up to several grams) in a covered Pt
crucible; mechanical homogenization was completed between heatings at lower --
temperatures for many of the experiments.
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Table 5. Experiments in Sealed Mo Tubes, in Tungsten Furnace

Composition
(Mole ratio Li20:A1203 ) Temperature (OC) Duration (hr) ObservtIons

50:50 1725 3 no melt

50:50 1765 3 partial melt

50:50 1805 3 complete melt

33:67 1600 1 no melt

33.67 1725 3 complete melt
33:67 1805 1 complete melt

33:67 1665 1 complete melt

33:67 1630 1 sintered or possible

partial melt

17:83 1725 3 no melt

17:83 1765 1 sintered or possible

partial melt

17:83 1805 1 partial melt
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Table 6. Results of Rietveld Refinementa of LiAl508

(a) Summary

Space Group - P4332

Bw - 0.077

a 7.9036(1) A

Structural formula - A8IV(Li4All2)VIO32

(b) Tetrahedral cationsbc

8 Al at position 8(c) at (x, x, x); with: x - -0.0014(6)
B - 0.23(6)

(c) Octahedral cations

12 Al at position 12(d) at (1/8, x, 1/4-x); with: x - 0.3689(5)B - 0.35(8)

4 LI at position 4(b) at (5/8, 5/8, 5/8); with: B - 2.3(4) --

(d) Anions

24 0 at position 24(e) at (x, y, z); with: x - 0.1145(3)
y - 0.1330(3)
z - 0.3842(2)
B - 0.28(4)

8 0 at position 8(c) at (x, x, x); with: x = 0.3854(3)

(e) First coordination distances D (in A)

Al in 12(d) to 2 0 In 24(e) 1.850(4)
Al in 12(d) to 2 0 in 24(e) 1.911(2)
Al in 12(d) to 2 0 in 8(c) 1.943(7)

Average of 6 distances 1.901 t: 0.042

Al in 8(c) to 3 0 in 24(e) 1.77(5)

Average of 4 distances 1.785-1 0.026

Li in 4(b) to 6 0 in 24(e) 2.042(2)
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Table 6 (continued)

Mt Second coordination sphere D(in A)

Al in 12(d) to 4I Al in 12(d) 2.829(3)
Al in 12(d) to 2 Li in 4(b) 2.T61(3)
Al in 12(d) to 2 Al In 8(o) 3.32(3)
Al in 12(d) to 2 Al in 8(c) 3.27(3)
Al in 12(d) to 2 Al in 8(c) 3.23(3)

Li in 4(b) to 6 Al in 12(d) 2.7610()
Li in 4(b) to 6 Al in 8(c) 3.287(3)

Al in 8(c) to 3 Al in 12(d) 3.23(3)-
Al in 8(c) to 3 Al In 12(d) 3.27(3)
Al in 8(c) to 3 Al in 12(d) 3.32(3)
Al In 8(c) to 3 Al in 8(c) 3.409(5)
Al in 8(c) to 1 Al in 8(c) 3.'461(5)

*Al in 8(c) to 3Li In 4(b) 3.29(l)

* aRietveld, H. M4., J. Appl. Crystallogr. 2 [1)65 (1969).

bHahn, T. (Ed.), International Tables for Crstllraph. Volume A: Dordrecht,
* Holland, D. Reidel Publ. Co. '(1983),'p. 638.~

c. is isotropic thermal parameter.
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Table 7. Results of Calcining High-Lithia Compositions Under Vacuuma

Composition Temperature Duration X-ray
(Mole ratio Li 2 0:A1 2 03 ) (OC) (hr) Analysis

90:10 900 56 YLiAl0 2 , BLisA04, "
Li20, unidentified phase

83:17 700 6 aLiIA104, OLIAlOA,

Li20, Li 2 CO3 , YLiAlO2

83:17 800 6 Li 2 O, YLiAI0 2 , BLi 5 AlO 4

83:17 800 6 aLi5Al04, OLisAl04,
YLiAIO2, Li 2O

83:17 900 23 YLiAlO2 , Li 5 A0I4

75:25 800 15 Li 2 O, YLiAlO2 , BLi 5 AlOi

aLithium carbonate starting material; final vacuum 5 X 10-6 torr.
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Table 8. Results of Quenching Experiments in Sealed Pt Tubes

Composition Heat Treatmenta Phases Present in
(Mole % Li20) (oC) X-ray patternb

95 900 Li20 + YLiAlO2 (+ tr. LiOH)

95 1L 20 + "i+LA10 2 (+ tr. LiOH) +

unidentified phase with peak at 23.700
95 10500 L 20 + YLiA102 (+ tr. LIOH) +

unidentified phase with peak at 23.700

90 900 Li20 + YLiA102 (+ tr. LiOH)

85 700 aL15A1O4 (+ tr. LIOH)
85 750 aL15AIO4 (+ tr. LiOH)
85 800 Li5A104 (+ tr. LIOH) + unidentified

phase with peak at 22.200
85 850 aLItAlO 4 (+ tr. LIOH)
85 900 OLi5A104 (+ tr. LiOH)
85 900 OLi 5AlO4 (+ tr. LIOH)

80 700 BLisAlO 4 + YLiAlO2 (+ tr. LiOH)
80 700 Udi5 AlO 4 + LiAlO 2 (+ tr. LiOH)
80 750 aL15A104 + YLiA102 (+ tr. LiOH)
80 800 L 0 + YLiAlO 2 (+ tr. LiOH)
80 850 aLLAIO4 + YLiAlO2 (+ tr. LiOH)
80 850 OLi 5 AlO 4 + ",LIA102 (+ tr. LiOH)
80 900 BLisA10 4 + YLiAlO2 (+ tr. LiOH)
80 900 BLi 5 AlO 4 + ,LiAIO2 (+ tr. LiOH)
80 900 aLisA104 + YLiAlO2 (+ tr. LiOH)

75 800 ILi 5 AlO4 + )'LiAl0 2
75 1000 Li 5AlOl4 + YLiAlO2

60 900 YLiAlO, (+ tr. LiOH) + undentified phase
with peak at 18.600

55 900 YLiAlO2 + OLIA1O4
55 900 YLiAlO 2 + LiAIO4

aTimes of heat treatment were variable, from a few hours to a few days
bX-ray work completed using CuKa radiation
cruns partially melted
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Table 9. Second and Third Law Heats of Reaction and Second Law Entropy
of Reaction for Equation (14).

Experiment AH(298) &S(298) AH(298) 3rd law
kcal/mol Gibbs/mol kcal/mol

825D 131.41 ± 5 .2a 418.21 ± 3.30 115.3 ±0.3
8261 88.1 ± 6.5 22.89 ± 3.95 113.5 + 0.6
82612 103.2 ± 1.0 31.29 ± 0.59 115.0 ± 0.3
826D 109.0 ± 0.8 341.28 ± 0.48 115.7 + 0.2
9011 97.8 ± 1.1 28.93 ± 0.63 113.6 ± 0.4
901D 110.7 ± 1.14 35.75 ± 0.79 115.0 ± 0.1
9021 101.9 ± 1.4 30.21 ± 0.87 115.3 ± 0.3
902D 115.2 + 0.9 36.97 ± 0.53 117.3 ± 0.1

a Uncertainties are standard errors

Table 10. Second and Third Law Heats of Reaction and Second Law Entropy
of Reaction for Equation (15).

Experiment AH(298) AS(298) AH(298) 3rd law
kcal/mol Gibbs/mol koal/mol

9121 126.1 ± 9 . 1 a 11.62 ± 5.57 124.9 ± 0.3
91212 108.7 ± 2.7 31.45 ± 1.59 125.0 ± 0.4
912D 127.1 ± 4.1 40.55 ± 2.35 127.6 ± 0.2
1041 110.3 ± 1.9 32.28 ± 1.91 125.6 ± 0.4
104D 130.3 + 1.6 142.25 ± 0.92 127.8 ± 0.1
1051 124.5 ± 3.0 39.12 ± 1.66 127.6 ± 0.3
105D 131.3 ± 1.5 41.92 ± 0.84 129.3 ± 0.1
101141 106.3 1 1.9 27.114 ± 1.11 130.8 ± 0.8
10171 102.14 ± 3.5 25.16 ± 1.90 131.2 ± 1.0
1017D 124.14 ± 1.0 36.16 ± 0.56 133.2 ± 0.e

a Uncertainties are standard errors.
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Table 11. Third Law Heats of Reaction (at 298K) from Various Workers.

Reaction A Reaction B Reaction C
Reference kcal kcal kcal

Guggi (25) 109.14 119.9 128.3
Ikeda (31) 107.3 118.5 125.3
Potter (27) - 120.8 131.8
This Work 117.3 127.8

Reactions

A. 1/4 Li 5 A10 4 (c) - Li(g) + 1/4 02(g) + 1/4 LiAl02 (c)

B. 5/4 LIA102 (c) - Li(g) + 1/4 02 (g) + 1/4 LiA15O8 (c)

C. LiA1508(c) - 1L(g) + 1/4 02 (g) + 5/2 A1203(c)

Table 12. Reference Thermodynamic Data (8)

0

Material AHf (298.15), kcal/mol

Al203(c,Q) -400.500

Li(g) 38.140
Li20(c) -143.100

LiA102(c) -284.100

Table 13. Heats of Formation (at 298K) from Vapor Pressure Data

o 00-AHf LiAl 5 08  -AHf LiAIO2  -AHf LiA 5 04

Reference kcal/mol kcal/mol kcal/mol

Reaction C Reaction B Reaction B Reaction A

This work 1090.7 1104.9 281.3
Potter (27) 1094.7 1090.9 284.9
Ouggi (25) 1094.5 1094.5 283.4 568.9
Ikeda (31) 1088.2 1100.1 281.7 560.7
JANAF (16) 284.1

Average 1091.2 1097.6 282.8
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Figure 1

Alternative representations of Phases in the (Li, Al) alloy reaction
system.
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Figure 2
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Figure 3

a. Schematic 1100 K phase diagrams
for the ternary boundary systems

- - of figure 2 (based upon calcula-
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Li 20(C) LiOH(L) H 20(g)

Al 0(~

Li(t)

LiAl (C)

Al.

Figure 4

Major features at phase compatibility In the system Li-Al- '
H-Li 20-Al2O3 -H2 0 at 1100 K: extent of solutions is not
indicated.
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Li 2 H2

U ~ ~ ~ ~1A102(c) / H2H0 9
+il2 c 111 2(c) (l 2 2 )

(Al Li)(t) +

+ UHQ

LI**L) IH(g

UI 1/2 H12

Figure 5

Predicted products of the equilibrium reaction of (LiAl) alloy with
water at 1100 K.
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Figure 6

Interim phase diagram based on the approaches used in investigating
various portions Of the phase diagram (indicated in the boxed areas).
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centi1meters

Figure 7

Experimental geometry for 1)TA measurements showing Pt Cells, Pt-10%

Rh thermocouples, and the alumina support structure.
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Figure 9

Plot at DTA effects, with tentative interpretation.
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Figure 12

Results of high temperature experiments in sealed capsules for
alumina-rich compositions. Solid, half-filled and empty circles
represent, respectively, complete, partial and no melting.
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(312) 20 () 26 (12) 20 ~4)

20 If

O*~e~ U~wtot

o U9
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Figure 114

Projected structure of LiAl 5 0R, from Rietveld refinement (see Fig. 13
and Table 6). Numbers Indicate "Z" coordinates In thirty-seconds. Oxygen
coordinates are at left and right of atom Positions, octahedral vacan-
cies and octahedral lithium are at top, and octahedral aluminum is at
bottom. Open or dashed symbols Indicate atoms beneath oxygen.
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Figure 15

Li pressure versus 1014/T for increasing and decreasing tempera-
ture series, 9011 and 9011), showing non-reproducibility In Li
pressure with Increasing or decreasing temperature run chronol-
ogy.
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Figure I a

Plot or Li and 02 pressure versus iolkn from the 901D data obtained
over LiA102 -LiAlSOS demonstrating constant ratio of Li/02 pressures.
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Figure 20

Li pressure versus 104/T for decreasing temperature series over
LIA08 - A1203.
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Figure 21
LI pressure versus 1i/T showing effect of temperature variation onexperimental slope In the LiAl508 - A120 phase region. See text foridentitiation ot run 1 and 2 In terms ol Table 15 notation.
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F Igure 22

Comparison ot model prediction (data points) and experimental phase
diagram data (lines) for L120 A120; - A1203 mixtures. The ratio 1:1
and 1:5 rter to compound phases or Li20 A1203 and Li205A1203"
respectively.
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Figure 23

Comparison of predicted (Model 3) and experietntal (Knudsen
effusion mss spectrometric) LI partial pressures and phase
boundaries for the equimloar Li 2O-A1203 mixture.
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Figure 241

Effect of temperature on the viscosities of LL and Al melts.
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Calculated viscosities of Al/LI liquid mixtures at 1200 K.
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Effect of volume fraction ot solids on viscosity of a liquid suspension.
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-'is is the first annual reporl of in ,experim-int.il research project on
the ph;i, c- quiIibrium propertie hi ,;y;, m Li -A 1()-H. A thermodynamic
analys .)f th- ysterm reveals 1h. 1)teft Iplprt., it iithlum rydride
t,, . ,'.it ion pr)d(uc1 . Major ne :, r '( .x ,lmfn#10. 0i Ih,t: , equilibria data
irp out. lined, and i determination A th,) i, -l I phase diagram is given

top priority.
Experimental methods for preparation and handling of atmospherically

sensitive Li2O/AIO mixtures are given. )TA investigation of the system
Li20-LiAlO 2 has yielded information on equilibrium melting behavior, and
the lower limit of melting in the system appears to be 10550 ± 10 OC, with
the eutectic located near (Li20)7 5 (A1203) 25 (mole %).

Quenching experiments with x-ray crystallographic analysis for the
high lithia portion of the system have been inconclusive, possibly due to
non-quenchable, rapidly reversible solid-state phase transitions. DTA data --

suggest appreciable solid solution of alumina in Li2 0, yet there is no - -

direct evidence of this from the x-ray powder diffraction patterns. Also
the (/B transition in Li5Al04 has been particularly difficult to locate
consistently.

On the high alumina end of the system Li20-A1203, experiments in
sealed Mo capsules have shown that the eutectic temperature is near
1630 OC, that LiAlO2 melts congruently near 1750 OC, and that LIA1 O8 melts
incongruently near 1750 C. Neutron diffraction analysis of LIAI5 8 cooled
rapidly from 1600 *.C shows a 1:3 ordering of Li:Al in the octahedral sites,
with extra peaks of undetermined origin.

Mass Spectrometrically determined vapor pressure data are reported for
mixtures of LiAIO2-LiAlsO8 and LIAlsO8-AI203. The results are in reasona-
ble agreement with literature values, but indicate the need for more
information on solid solution limits. Heats of reaction for the vaporiza-
tion processes are reported. A preliminary thermodynamic model for
prediction of solid-liquid-vapor equilibria has been developed and tested
by comparison with the experimental data.

Needs for future research In the systems Li O-Al 20 and Li-Al-
Li2O-A1 03 are outlined. The utility of such research in understanding the
combust on of mixtures In the LI-AI-O-H system is emphasized. Two
Appendices describe the modeling of viscosities in multiphase mixtures, and
the results of a computerized literature search on the system Li-Al-O-H.
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